このエントリーをはてなブックマークに追加

7月

13

機械学習を始めるためのPythonライブラリ基礎(行列計算、データフレーム処理)

Jupyter Notebookを使ってPythonの文法をハンズオンで学びます

Organizing : スキルアップAI

Registration info

前払い (4h)

6000 (Pre-pay)

FCFS
1/10

About Prepayment

About Prepayment Contact Info:

(Only shown to attendees.)

Cancel/Refund Policy:

やむを得ずキャンセルされる場合は、開催日の4日前までのご連絡に限り、払い戻し手数料(5.25%)を差し引いた金額を払い戻し致します。以降は払い戻しをできませんのでご注意ください。
なお、お申込者の都合による日付の変更(振替)も、開催日の4日前までのご連絡に限ります。

領収データの発行:

発行しない (詳しくはこちら)

Description

「機械学習を始めるためのPython入門講座」:7月開催日程のご案内

◆ 7月06日(土)9:00~13:00

レベル1「機械学習を始めるためのPythonプログラミング入門」

◆ 7月13日(土)9:00~13:00 ← 本ページはこちらの講座のご案内となります

レベル2「機械学習を始めるためのPythonライブラリ基礎(行列計算、データフレーム処理)」

◆ 7月20日(土)9:00~13:00

レベル3「機械学習を始めるためのPythonライブラリ基礎(データ可視化)」

◆ 7月27日(土)9:00~13:00

レベル4「機械学習を始めるためのPythonデータ分析実践(機械学習モデル構築)」


※ 土曜日に開催の講座は各レベルとも、平日に開催している理論講座「前半」と「後半」の内容と同等となります

※ 最新のスケジュールはホームページにてご確認ください

【ご注意ください】

  • 7月は平日(火曜もしくは金曜 19:30~22:00)の開催もございます
  • 土曜日に開催の講座は各レベルとも、平日に開催している理論講座「前半」と「後半」の内容と同等となります
  • 土曜日の開催は理論講座のみとなり、平日に開催している演習講座の内容は含みません
  • 各レベルとも、前レベルの講座を受講済みもしくは同等の内容を理解している前提で進行いたします
  • 全講座におきまして、当日までの事前準備が必須となっております。下記の「講座までの準備」の項目を必ずご確認ください

概要

データ分析・機械学習などに興味がある初学者にとっては、機械学習のアルゴリズムなどが華やかに見えるかもしれませんが、環境設定と様々な基本的ツールへのアクセスができなければ、話がはじまりません。

本講座では、プログラミングの未経験者、もしくはPythonは触ったことがないという方でも、データ分析・機械学習に取り組むに当たって必須の、Pythonライブラリの扱い方をハンズオンで学んでいただきます。

Pythonはプログラミング言語の中で、機械学習、深層学習の開発環境が最も整っている言語です。また、高級言語なので、他の言語と比べて比較的習得しやすいのが特徴です。本講座はハンズオン形式でPythonの文法を学んで頂き、講座内容を習得できれば自力でPythonを用いた開発が可能になります。

近年、Pythonが科学技術計算や機械学習の分野で特に重宝されている要因の一つは、その豊富なライブラリ群の存在にあります。特に、高度な数値計算を高速に実行するNumPy、データベースのフォーマット及び操作ツールを備えるPandasは最重要なライブラリであり、機械学習の実装に当たっては欠かせない前提知識となります。

本講座では、機械学習への応用を見据えたNumPy、Pandas操作の必要事項を基礎からハンズオン形式にて習得することを目指します。

この講座で得られること

・機械学習に必須のPythonライブラリ(NumPy、Pandas)の使い方

カリキュラム

  1. 本講座の目的とゴールの共有
  2. NumPyで計算を高速化してみよう
  3. Pandasでデータ処理を効率化してみよう
  4. NumPy-Pandas間でデータの受け渡しをしてみよう
  5. 演習問題

対象者

・これから、データ分析、機械学習をはじめたい方

・Python未経験者のエンジニアの方

・将来的にデータサイエンティストになりたい方

前提スキル

・Pythonの基本的な文法がわかる方

・機械学習を始めるためのPython文法入門を受講された方

*該当講座は、前レベルの講座を理解している前提で進行します。

講師

T Miki

明治大学大学院所属。大学院ではPyTorchを用いて、深層学習による画像処理に関する研究を行う。主に、月面における無人探査機の自己位置推定に対する最適モデルを検討中。

当日のお持物

ご自身のノートPC(必須)

【動作環境】 MacOSX 10.9 以上 Windows 7 以上(64bit必須) メモリ4GB以上

講座までの準備(必須)

Anaconda3-5.0.1以上のインストールをいただき、ブラウザでJupyterが表示できている状態まで事前に準備お願い致します。 ブラウザから http://localhost:8888/tree で表示されていることをご確認してください。

*準備ができていない場合、ハンズオン講座なのでついてこれなくなってしまいます。この場合のタイムロスはカバーできません。事前準備を必ず行ってからお越しいただけますようお願いいたします。

通信環境に関して

Wi-Fi環境はございますが、繋がりにくい場合はご自身のテザリングをご利用ください(ベストエフォートとなります)

会場へのアクセス

スキルアップAI 水道橋オフィス(JR水道橋駅西口より徒歩2分)

東京都千代田区神田三崎町3-3-20 VORT水道橋 Ⅱ 5階

  • 直接会場にお越しください
  • 遅刻される場合も直接会場にお越しください
  • 講義時間中に出席を取ります

受付・入場時間

開場は開始時刻の10分前です

10分以上前にお越しになられますと、会場の準備のために外でお待ちいただく場合がございます。ご注意ください

領収書

【Paypalでお支払いの場合】 PayPal発行の受領書が領収書となります。受領書ページは、PayPalの支払い完了ページで「印刷用受領書を見る」をクリックすると表示されます。当社よりの重複しての領収書発行は行えません

【Stripeでお支払いの場合】 Stripe発行の受領書が領収書となります。当社より重複しての領収書発行は行えません

備考

  • 最小遂行人数「4名」:開催日の2日前までに最小遂行人数に達しない場合は、中止となります。ただし、複数のチャンネルで募集を行っているため、本サイトでの申込者数が最小遂行人数に達しない場合でも開催になる場合がございます
  • 環境設定などでつまった場合、可能な限りフォローさせていただきますが、講義の流れを優先させていただきます
  • 勉強会内容を撮影もしくは録音することは、ご遠慮ください
  • 個人ブログへの記述については、良識の範囲内でお願いいたします
  • 講義コンテンツは全てスキルアップAIに帰属していますので、複製はご遠慮ください

運営団体

スキルアップAI https://www.skillupai.com/

講座に関するお問い合わせは、info@skillupai.comまでお願いいたします

Media View all Media

If you add event media, up to 3 items will be shown here.

Feed

skillupai

skillupai published 機械学習を始めるためのPythonライブラリ基礎(行列計算、データフレーム処理).

06/28/2019 10:35

機械学習を始めるためのPythonライブラリ基礎(行列計算、データフレーム処理) を公開しました!

Ended

2019/07/13(Sat)

09:00
13:00

開催日時が重複しているイベントに申し込んでいる場合、このイベントには申し込むことができません

Registration Period
2019/06/28(Fri) 10:34 〜
2019/07/12(Fri) 20:00

Location

スキルアップAI 水道橋オフィス  VORT水道橋Ⅱ 5階

東京都千代田区神田三崎町3-3-20

Organizer

Attendees(1)

R_Okumura

R_Okumura

機械学習を始めるためのPythonライブラリ基礎(行列計算、データフレーム処理) に参加を申し込みました!

Attendees (1)

Canceled (1)