お知らせ 【グループ管理者の皆さま】成長し続けるエンジニアを支援する「Forkwell」と「connpass」が連携し、connpass上でイベントを開催するグループを2020年3月末まで支援いたします。詳しくはこちら by Forkwell

このエントリーをはてなブックマークに追加

4月

19

【初級者歓迎】高速データ処理のためのNumPy/Pandas徹底演習

理解を定着させるためにNumPy / Pandasを手を動かして学びます。

Organizing : スキルアップAI

Registration info

前払い(2.5h)

3000 (Pre-pay)

FCFS
4/10

About Prepayment

About Prepayment Contact Info:

(Only shown to attendees.)

Cancel/Refund Policy:

やむを得ずキャンセルされる場合は、開催日の4日前までのご連絡に限り、払い戻し手数料を差し引いた金額を払い戻し致します。以降は払い戻しをできませんのでご注意ください。
なお、お申込者の都合による日付の変更(振替)も、開催日の4日前までのご連絡に限ります。

Print receipt data:

発行しない (詳しくはこちら)

Description

「機械学習を始めるためのPython入門講座」:日程のご案内

本ページはレベル2・演習講座のご案内となります。


レベル1「機械学習を始めるためのPythonプログラミング入門」

理論講座(前半)4月26日(金)19:30~22:00

理論講座(後半)5月10日(金) 19:30~22:00

演習講座 5月17日(金) 19:30~22:00


レベル2「機械学習を始めるためのPythonライブラリ基礎(行列計算、データフレーム処理)」

理論講座(前半)4月23日(火) 19:30~22:00

理論講座(後半)5月07日(火) 19:30~22:00

演習講座 4月19日(金) 19:30~22:00


レベル3「機械学習を始めるためのPythonライブラリ基礎(データ可視化)」

日程調整中


レベル4「機械学習を始めるためのPythonデータ分析実践(機械学習モデル構築)」

理論講座(前半+後半) 4月21日(日) 09:00~13:00

演習講座 日程調整中


※ リンクのない講座はお申し込み受付を開始次第、リンクを追加してまいります。

【ご注意ください】

  • 各レベルとも、前レベルの講座を受講済みもしくは同等の内容を理解している前提で進行いたします。
  • 各レベルとも、演習講座は理論講座を受講済みもしくは同等の内容を理解している前提で進行いたします。
  • 全講座におきまして、当日までの事前準備が必須となっております。下記の「講座までの準備」の項目を必ずご確認ください。

概要

データ分析・機械学習などに興味がある初学者にとっては、機械学習のアルゴリズムなどが華やかに見えるかもしれませんが、環境設定と様々な基本的ツールへのアクセスができなければ、話がはじまりません。

本講座では、プログラミングの未経験者、もしくはPythonは触ったことがないという方でも、データ分析・機械学習に取り組むに当たって必須の、Pythonライブラリの扱い方をハンズオンで学んでいただきます。

Pythonはプログラミング言語の中で、機械学習、深層学習の開発環境が最も整っている言語です。また、高級言語なので、他の言語と比べて比較的習得しやすいのが特徴です。本講座はハンズオン形式でPythonの文法を学んで頂き、講座内容を習得できれば自力でPythonを用いた開発が可能になります。

近年、Pythonが科学技術計算や機械学習の分野で特に重宝されている要因の一つは、その豊富なライブラリ群の存在にあります。特に、高度な数値計算を高速に実行するNumPy、データベースのフォーマット及び操作ツールを備えるPandasは最重要なライブラリであり、機械学習の実装に当たっては欠かせない前提知識となります。

本講座では、機械学習への応用を見据えたPandas操作の必要事項を基礎からハンズオン形式にて習得することを目指します。

この講座で得られること

  1. NumPy を用いた行列計算のスキル
  2. Pandas を用いたデータフレーム処理のスキル

カリキュラム

  1. NumPy による行列計算
  2. Pandas によるデータフレーム処理
  3. 総合問題

対象者

・これから、データ分析、機械学習をはじめたい方

・Python未経験者のエンジニアの方

・将来的にデータサイエンティストになりたい方

・NumPy や Pandas を学んだけれど、実装に自信のない方

会場へのアクセス

スキルアップAI 水道橋オフィス

東京都千代田区神田三崎町3-3-20 VORT水道橋 Ⅱ 5階(旧スカイワードビル)

  • 直接会場にお越しください。 
  • 遅刻される場合も直接会場にお越しください。
  • 講義時間中に出席を取ります。 


受付・入場時間

開場は開始時刻の10分前です。

10分以上前にお越しになられますと、会場の準備のために外でお待ちいただく場合がございます。ご注意ください。

講師

S Mizoguchi

東京大学大学院所属。統計検定一級所持。日本ディープラーニング協会のE資格合格者。ハンズフリー音声通信に適した聴覚的品質を損なわない音声強調をテーマに、深層学習と高次統計量分析の観点から、chainer を用いて研究を行っている。

当日のお持物

ご自身のノートPC(必須) 筆記用具

【動作環境】 MacOSX 10.9 以上 Windows 7 以上(64bit必須) メモリ4GB以上

講座までの準備(必須)

Anaconda3-5.0.1以上のインストールをいただき、ブラウザでJupyterが表示できている状態まで事前に準備お願い致します。 ブラウザからhttp://localhost:8888/treeで表示されていることをご確認してください。

*準備ができていない場合、ハンズオン講座なのでついてこれなくなってしまいます。この場合のタイムロスはカバーできません。事前準備を必ず行ってからお越しいただけますようお願いいたします。

通信環境に関して

Wi-Fi環境はございますが、繋がりにくい場合はご自身のテザリングをご利用ください。(ベストエフォートとなります。)

領収書

【Paypalでお支払いの場合】 PayPal発行の受領書が領収書となります。 受領書ページは、PayPalの支払い完了ページで「印刷用受領書を見る」をクリックすると表示されます。 当社よりの重複しての領収書発行は行えません。

【Stripeでお支払いの場合】 Stripe発行の受領書が領収書となります。当社より重複しての領収書発行は行えません。

備考

  • 最小遂行人数「4名」:開催日の2日前までに最小遂行人数に達しない場合は、中止となります。ただし、複数のチャンネルで募集を行っているため、本サイトでの申込者数が最小遂行人数に達しない場合でも開催になる場合がございます。
  • 環境設定などでつまった場合、可能な限りフォローさせていただきますが、講義の流れを優先させていただきます。
  • 勉強会内容を撮影もしくは録音することは、ご遠慮ください。
  • 個人ブログへの記述については、良識の範囲内でお願いいたします。
  • 講義コンテンツは全てスキルアップAIに帰属していますので、複製はご遠慮ください。

運営団体

スキルアップAI

https://www.skillupai.com/

講座に関するお問い合わせは、info@skillupai.comまでお願いいたします。

Media View all Media

If you add event media, up to 3 items will be shown here.

Feed

skillupai

skillupai published 【初級者歓迎】高速データ処理のためのNumPy/Pandas徹底演習.

04/06/2019 20:55

【初級者歓迎】高速データ処理のためのNumPy/Pandas徹底演習 を公開しました!

Group

Ended

2019/04/19(Fri)

19:30
22:00

開催日時が重複しているイベントに申し込んでいる場合、このイベントには申し込むことができません

Registration Period
2019/04/06(Sat) 20:54 〜
2019/04/18(Thu) 20:00

Location

スキルアップAI 水道橋オフィス  VORT水道橋Ⅱ 5階

東京都千代田区神田三崎町3-3-20

Organizer

Attendees(4)

g640114

g640114

【初級者歓迎】高速データ処理のためのNumPy/Pandas徹底演習に参加を申し込みました!

otouhu281

otouhu281

【初級者歓迎】高速データ処理のためのNumPy/Pandas徹底演習 に参加を申し込みました!

isikawam

isikawam

【初級者歓迎】高速データ処理のためのNumPy/Pandas徹底演習に参加を申し込みました!

skonuma

skonuma

【初級者歓迎】高速データ処理のためのNumPy/Pandas徹底演習に参加を申し込みました!

Attendees (4)