新機能 イベントメッセージの予約機能を追加しました。イベント主催者様は、参加者へのメッセージ送信を事前に予約できます。詳しくはこちらをご確認ください。

新機能 イベント詳細画面に「参加者への情報」欄を追加しました。イベント管理者、発表者、参加者(抽選中や補欠は除く)だけに表示されるフィールドです。詳しくはこちら

このエントリーをはてなブックマークに追加

Dec

11

【初級者歓迎】描画スキルを高めるためのseaborn・Plotly入門

ハンズオンでPythonにおけるグラフ生成の要!Matplotlibを攻略しよう

Organizing : スキルアップAI

Registration info

前払い

3000 (Pre-pay)

FCFS
3/10

About Prepayment

About Prepayment Contact Info:

(Only shown to attendees.)

Cancel/Refund Policy:

やむを得ずキャンセルされる場合は、開催日の4日前までのご連絡に限り、払い戻し手数料を差し引いた金額を払い戻し致します。以降は払い戻しをできませんのでご注意ください。

Print receipt data:

発行しない (詳しくはこちら)

Description

概要

機械学習の実社会への応用が急速に普及した現在でも、意思決定の全てがデータの定量評価によって置き換わることはなく、重要な場面では解析結果をもとに人間が判断を下す局面が多くあります。

そこで重要となるのが、データを人間にとってわかりやすい形で表現する力、データの視覚化の能力です。

本講座では、Jupyter notebook上でデータ視覚化用ライブラリを用いて、自在にグラフを作成する方法を学びます。 描画の基本であるMatplotlibからさらに進んで、これらのライブラリは実装上複数の書き方が混在し、混乱を招きやすいため、系統別に整理をすることで書き分ける力を養います。

講座で基本的操作を学ばれた方は、【初級者歓迎】kaggkeを始めるための前処理入門、【初級者歓迎】Scikit-learnを用いたkaggke入門などの講座にも参加していただけると、可視化スキルの重要性を認識いただけます。

また、定期開講予定の「現場で使える機械学習・データ分析基礎講座 」を受講いただけると、本講義で身につけたスキルを活かして、機械学習の実務の流れと様々なアルゴリズムの基礎をマスターすることができます。

この講座で得られること

・機械学習に取り組むにあたっての、実技に関する直前知識、構築したモデルの説明スキルの基礎

カリキュラム

  1. 本講座の目的とゴールの共有
  2. Seabornで多様なプロットを体験
  3. PandasのPlotメソッド
  4. インタラクティブなグラフ。Plotly
  5. 演習問題

対象者

  • 非エンジニアの方
  • これから、データ分析、機械学習をはじめたい方
  • 将来的にデータサイエンティストになりたい方

前提知識

Pythonの基礎的な文法、NumPy, Pandasの基礎をある程度理解していることが望ましい。

*該当講座は、前レベルの講座を理解している前提で進行します。

講師

S Matsubara

某企業にてIoT/AIを活用したマーケティングのシステム開発・データ分析のグループリーダーを担当。 大阪大学工学部・応用物理学科(信号処理)、奈良先端科学技術大学院大学・情報科学研究科(AR研究)を卒業後、某医療機器メーカーでの解析アルゴリズム開発や、10年に渡る欧米の開発拠点でのソリューション開発などを経て現職。

Python講座一覧

皆様の強い要望にお応えして、ご好評をいただいていたpythonレベル1~4の授業を前後半に分けて、平日夜にも受講できるように致しました。休日にまとまった時間を取るのが難しかった方でも受講しやすくなりましたのでぜひご利用ください!

レベル カテゴリ 講座名
レベル1 入門 Pythonプログラミング入門 1. Pythonで学ぶプログラミング超入門
レベル1 入門 Pythonプログラミング入門 2. Pythonで学ぶオブジェクト指向と標準ライブラリ超入門
レベル1 入門 Pythonプログラミング入門 3. Pythonプログラミング徹底演習
レベル2 初級前半 Pythonライブラリ基礎(行列計算、データフレーム処理) 4. 高速データ処理のためのNumpy入門
レベル2 初級前半 Pythonライブラリ基礎(行列計算、データフレーム処理) 5. 高速データ処理のためのPandas入門
レベル2 初級前半 Pythonライブラリ基礎(行列計算、データフレーム処理) 6. 高速データ処理のためのNumpy・Pandas徹底演習
レベル3 初級後半 Pythonライブラリ基礎(データ可視化) 7. データ可視化のためのMatplotlib入門
レベル3 初級後半 Pythonライブラリ基礎(データ可視化) 8. 描画スキルを高めるためのseaborn・Plotly入門
レベル3 初級後半 Pythonライブラリ基礎(データ可視化) 9. 機械学習のためのMatplotlib徹底演習
レベル4 初中級 Pythonデータ分析実践(機械学習モデル構築) 10. kaggleを始めるための前処理入門
レベル4 初中級 Pythonデータ分析実践(機械学習モデル構築) 11. Scikit-learnを用いたkaggle入門
レベル4 初中級 Pythonデータ分析実践(機械学習モデル構築) 12. 機械学習モデル構築徹底演習
レベル5 中級 現場で使える機械学習・データ分析基礎講座 現場で使える機械学習・データ分析基礎講座

会場へのアクセス方法

直接会場にお越しください。 遅刻される場合も直接会場にお越しください。 講義時間中に出席を取ります。

当日のお持物

ご自身のノートPC(必須)

【動作環境】 MacOSX 10.9 以上 Windows 7 以上(64bit必須) メモリ4GB以上

講座までの準備

Anaconda3-5.0.1以上のインストールをいただき、ブラウザでJupyterが表示できている状態まで事前に準備お願い致します。 ブラウザからhttp://localhost:8888/treeで表示されていることをご確認してください。

*準備ができていない場合、ハンズオン講座なので、フォローできない場合がございます。

通信環境に関して

Wi-Fiあり

領収書

【Paypalでお支払いの場合】 PayPal発行の受領書が領収書となります。 受領書ページは、PayPalの支払い完了ページで「印刷用受領書を見る」をクリックすると表示されます。 当社よりの重複しての領収書発行は行えません。

【Stripeでお支払いの場合】 Stripe発行の受領書が領収書となります。当社より重複しての領収書発行は行えません。

備考

  • 最小遂行人数「4名」:開催日の2日前までに最小遂行人数に達しない場合は、中止となります。ただし、複数のチャンネルで募集を行っているため、本サイトでの申込者数が最小遂行人数に達しない場合でも開催になる場合がございます。
  • 環境設定などでつまった場合、可能な限りフォローさせていただきますが、講義の流れを優先させていただきます。
  • 勉強会内容を撮影もしくは録音することは、ご遠慮ください。
  • 個人ブログへの記述については、良識の範囲内でお願いいたします。
  • 講義コンテンツは全てスキルアップAIに帰属していますので、複製はご遠慮ください。

運営団体

スキルアップAI https://www.skillupai.com/

講座に関するお問い合わせは、info@skillupai.comまでお願いいたします。

Media View all Media

If you add event media, up to 3 items will be shown here.

Feed

skillupai

skillupai published 【初級者歓迎】描画スキルを高めるためのseaborn・Plotly入門.

11/22/2018 22:14

【初級者歓迎】描画スキルを高めるためのseaborn・Plotly入門 を公開しました!

Ended

2018/12/11(Tue)

19:30
22:00

You cannot RSVP if you are already participating in another event at the same date.

Registration Period
2018/11/22(Thu) 21:39 〜
2018/12/10(Mon) 20:00

Location

ベルサール九段下 room3

東京都千代田区九段北1-8-10(住友不動産九段ビル3・4F)

Organizer

Attendees(3)

azuma19810819

azuma19810819

【初級者歓迎】描画スキルを高めるためのseaborn・Plotly入門 に参加を申し込みました!

takuma1234

takuma1234

【初級者歓迎】描画スキルを高めるためのseaborn・Plotly入門 に参加を申し込みました!

wakui

wakui

【初級者歓迎】描画スキルを高めるためのseaborn・Plotly入門 に参加を申し込みました!

Attendees (3)